
1

CHAPTER SIX: SCOPE, ABSTRACTION, COMPOSITION

6.1 Scope ambiguities, quantifying-in and storage.

We will now add a mechanism for creating scope ambiguities.

Following Cooper 1975, 1983, the mechanism we will use will be a storage mechanism.

We will first introduce the basic mechanism and show its working in several examples.

Up to now our grammar generates pairs of syntactic structures and semantic

representation. We will extend this now.

The grammar will now generate triple <A,A',S> where:

 -A is a syntactic tree.

 -A', the translation of A, is an IL expression.

 -S, the quantifier store, is a set of pairs <n,α> where n is an index and α a TY2

expression.

The quantifier store will be used for creating scope ambiguities.

We will assume that for lexical entries the quantifier store is empty.

We assume that stores are inherited upward in the following way:

 <A,B',SB>

 │

 B

For unary branching, both the meaning and the store inherit up.

 < A , APPLY[f,a], SB SC>

 B C

For binary branching, the stores corresponding to the daughters are united.

We now introduce two operations STOREn and RETRIEVEn

 STOREn[<DP, DP', SDP>] = <DP, xn,S DP {<n,DP'>}>

STOREn replaces the interpretation DP' of the DP by a variable xn (of type e), and stores

the interpretation DP' under index n in the quantifier store.

Thus, STOREn tells you to use a variable xn for the time being as the interpretation of the

DP, instead of the translation that we have just stored.

2

Example:

STORE1[< DP , λP.x[CATw(x) → P(x)], Ø >] =

 D NP

 │ │

 every cat

 < DP , x1, {<1,λP.x[CATw(x) → P(x)]>} >

 D NP

 │ │

 every cat

Our second new rule is quantifying in, RETRIEVEn.

 Let <IP, IP', SIP> be a triple, with IP a syntactic tree, IP' its interpretation, SIP the

corresponding store.

 Let <n,α> SIP, and assume that no other interpretation is stored under index n in

SIP.

 RETRIEVEn[<IP, IP', SIP>] = <IP, APPLY[λxn.IP',α], SIP−{<n,α>}>

RETRIEVEn turns the IP meaning IP'of type t into a predicate λxn.IP' of type <e,t>,

by abstracting over variable xn of type e.

It takes the DP meaning α, which was stored under index n, out of the quantifier store SIP

and it applies the predicate λxn.IP' to α with APPLY.

We assume that we always want to end up with an empty store.

With this mechanism, we are able to derive translations of sentences where the meaning

of an NP takes wider semantic scope than its syntactic scope.

3

(1) Every girl hugs a cat.

I will use this example to demonstrate the effects of the scope mechanism.

This sentence has five types of derivations. I will go through all five, and show that as a

result, the sentence will be generated by the grammar with two meanings:

one where the meaning of every girl takes scope over the meaning of a cat,

and one where the meaning of a cat takes scope over the meaning of every girl.

All derivations start out with the same structure, interpretation and store for every girl

and some cat:

< DP , λPu[GIRLw(u) → P(u)], Ø >

 D NP

 │ │

every girl

< DP , λPz[CATw(z) P(z)], Ø >

 D NP

 │ │

 a cat

(1) Every girl hugs a cat.

DERIVATION 1

From the lexical item hug we generate:

<V, HUGw, Ø >

 │

 hug

The V takes the DP as a complement, we apply the V interpretation to the interpretation

of [DP a cat], and we unite the stores (giving Ø). This gives:

< VP , APPLY[HUGw, λP.z[CATw(z) P(z)]] , Ø >

 V DP

 │

hug D NP

 │ │

 a cat

4

APPLY[HUGw, λP.z[CATw(z) P(z)]]

= LIFT[HUGw] (λP.z[CATw(z) P(z)]) [def APPLY]

= [λTλx.T(λy.HUGw(x,y))](λP.z[CATw(z) P(z)]) [def LIFT + rel notation]

= λx.[λP.z[CATw(z) P(z)](λy.HUGw(x,y))] [λ-con]

= λx.z[CATw(z) (λy.HUGw(x,y)(z)] [λ-con]

= λx.z[CATw(z) HUGw(x,z)] [λ-con]

So we get:

< VP , λx.z[CATw(z) HUGw(x,z)], Ø >

 V DP

 │

hug D NP

 │ │

 a cat

We have: <I, λP.P, Ø >

 │

 e

The I takes the VP as a complement, and we get:

< I' , λx.z[CATw(z) HUGw(x,z)] , Ø >

 I VP

│

e V DP

 │

 hug D NP

 │ │

 a cat

The I' takes [DP every girl] as a specifier, and we get:

< IP , APPLY[λx.z[CATw(z) HUGw(x,z)], λP.x[GIRLw(x) → P(x)], Ø >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

5

APPLY[λx.z[CATw(z) HUGw(x,z)], λPu[GIRLw(u) → P(u)]]

= LIFT[λx.z[CATw(z) HUGw(x,z)]] (λPu[GIRLw(u) → P(u)]) [def APPLY]

= λT.T(λx.z[CATw(z) HUGw(x,z)]) (λPu[GIRLw(u) → P(u)]) [def LIFT]

= λPu[GIRLw(u) → P(u)] (λx.z[CATw(z) HUGw(x,z)]) [λ-con]

= u[GIRLw(u) → [λx.z[CATw(z) HUGw(x,z)]](u)] [λ-con]

= u[GIRLw(u) → z[CATw(z) HUGw(u,z)] [λ-con]

So we get:

< IP , u[GIRLw(u) → z[CATw(z) HUGw(u,z)]], Ø >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

6

(1) Every girl hugs a cat.

DERIVATION 2

We build up the same I' as under derivation 1:

< I' , λx.z[CATw(z) HUGw(x,z)], Ø >

 I VP

│

e V DP

 │

 hug D NP

 │ │

 a cat

We apply STORE1 to every girl:

STORE1[< DP , λP.u[GIRLw(u) → P(u)] , Ø >] =

 D NP

 │ │

 every girl

< DP , x1, {<1,λPu[GIRLw(u) → P(u)]>} >

 D NP

 │ │

every girl

The I' takes this DP as a specifier, applies I' interpretation to the interpretation of the DP,

which is x1, and unites the stores. We get:

< IP , APPLY[λx.z[CATw(z) HUGw(x,z)], x1], {<1,λPu[GIRLw(u) → P(u)]>}>

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

7

APPLY[λx.z[CATw(z) HUGw(x,z)],x1]

= λx.z[CATw(z) HUGw(x,z)] (x1) [def APPLY]

= z[CATw(z) HUGw(x1,z)] [λ-con]

So we get:

< IP , z[CATw(z) HUGw(x1,z)], {<1,λPu[GIRLw(u) → P(u)]>}>

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

To this we apply RETRIEVE1, which gives:

< IP , APPLY[λx1.z[CATw(z) HUGw(x1,z)], λPu[GIRLw(u) → P(u)]],Ø >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

APPLY[λx1.z[CATw(z) HUGw(x1,z)], λPu[GIRLw(u) → P(u)]]

=LIFT[λx1.z[w (z) w(x1,z)]] (λPu[GIRLw(u) → P(u)]) [def APPLY]

=λT.T(λx1.z[CATw(z) HUGw(x1,z)]) (λPu[GIRLw(u) → P(u)]) [def LIFT]

= [λPu[GIRLw(u) → P(u)]] (λx1.z[CATw(z) HUGw(x1,z)]) [λ-con]

= u[GIRLw(u) → [λx1.z[CATw(z) HUGw(x1,z)]](u)] [λ-con]

= u[GIRLw(u) → z[CATw(z) HUGw(u,z)]] [λ-con]

8

So we get the same as in derivation 1:

< IP , u[GIRLw(u) → z[CATw(z) HUGw(u,z)]], Ø >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

9

(1) Every girl hugs a cat.

DERIVATION 3

This time we start by applying STORE2 to a cat and get:

< DP ,x2, {<2,λPz[CATw(z) P(z)]>} >

 D NP

 │ │

 a cat

The V hug takes this as a complement, and we get:

< VP , APPLY[HUGw,x2], {<2,λP.z[CATw(z) P(z)]>} >

 V DP

 │

hug D NP

 │ │

 a cat

APPLY[HUG,x2]

= HUG(x2) [def APPLY]

So we get:

< VP , HUGw(x2), {<2,λP.z[CATw(z) P(z)]>} >

 V DP

 │

hug D NP

 │ │

 a cat

The empty I takes this as a complement, and we get:

< I' , HUGw(x2), {<2,λP.z[CATw(z) P(z)]>} >

 I VP

│

e V DP

 │

 hug D NP

 │ │

 a cat

10

This I' takes every girl as a specifier, and we get:

< IP , APPLY[HUGw(x2),λPu[GIRLw(u) → P(u)]], {<2,λP.z[CATw(z) P(z)]>}>

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

APPLY[HUGw(x2),λPu[GIRLw(u) → P(u)]]

= LIFT[HUGw(x2)] (λPu[GIRLw(u) → P(u)]) [def APPLY]

= λT.T(HUGw(x2)) (λPu[GIRLw(u) → P(u)]) [def LIFT]

= λPu[GIRLw(u) → P(u)] (HUGw(x2)) [λ-con]

= u[GIRLw(u) → [HUGw(x2)](u)] [λ-con]

= u[GIRLw(u) → HUGw(u,x2)] [rel notation]

So we get:

< IP , u[GIRLw(u) → w(u,x2)], {<2,λP.z[CATw(z) P(z)]>}>

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

11

To this we apply RETRIEVE2 and we get:

< IP , APPLY[λx2.u[GIRLw(u) → HUGw(u,x2)], λPz[w (z) P(z)]],Ø >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

APPLY[λx2.u[GIRLw(u) → HUGw(u,x2)],λPz[CATw(z) P(z)]]]

= LIFT[λx2.u[GIRLw(u) → HUGw(u,x2)]](λPz[CATw(z) P(z)])[def APPLY]

= λT.T(λx2.u[GIRLw(u) → HUGw(u,x2)])(λPz[CATw(z) P(z)]) [def LIFT]

= λPz[CATw(z) P(z)] (λx2.u[GIRLw(u) → HUGw(u,x2)]) [λ con]

= z[CATw(z) [λx2.u[GIRLw(u) → HUGw(u,x2)]](z)] [λ-con]

= z[CATw(z) u[GIRLw(u) → HUGw(u,z)]] [λ-con]

So we get:

< IP , z[CATw(z) u[GIRLw(u) → HUGw(u,z)]] ,Ø >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

This time the derivation produces the sentence with a different meaning: the object NP

takes wide scope over the subject NP.

12

(1) Every girl hugs a cat.

DERIVATIONS 4 and 5

In both derivations 4 and 5 we apply STORE1 to every girl and STORE2 to a cat, so these

derivations use:

< DP , x1, {<1,λPu[GIRLw(u) → P(u)]>} >

 D NP

 │ │

every girl

and

< DP , x2, {<2,λPz[CATw(z) P(z)]>}>

 D NP

 │ │

 a cat

DERIVATION 4

We build up the I' hug a cat in the same way as in derivation 3 and get:

< I' , HUG(x2), {<2,λP.z[CATw(z) P(z)]>} >

 I VP

│

e V DP

 │

 hug D NP

 │ │

 a cat

13

This I' takes every girl as a specifier, and we get:

< IP , APPLY[HUGw(x2),x1], {<1,λPu[GIRLw(u) → P(u)]>,

 <2,λP.z[CATw(z) P(z)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

APPLY[HUGw(x2),x1]

= [HUGw(x2)](x1) [def APPLY]

= HUGw(x1,x2) [rel notation]

So we get:

< IP , HUGw(x1,x2), {<1,λPu[GIRLw(u) → P(u)]>, <2,λP.z[CATw(z) P(z)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

To this we apply RETRIEVE2

and we get:

< IP , APPLY[λx2.HUGw(x1,x2), λP.z[CATw(z) P(z)]],

 {<1,λPu[GIRLw(u) → P(u)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

14

APPLY[λx2.HUGw(x1,x2), λP.z[CATw(z) P(z)]]

= LIFT[λx2.HUGw(x1,x2)](λP.z[CATw(z) P(z)]) [def APPLY]

= λT.T(λx2.HUGw(x1,x2))(λP.z[CATw(z) P(z)]) [def LIFT]

= [λP.z[CATw(z) P(z)]](λx2.HUGw(x1,x2)) λ con]

= z[CATw(z) [λx2.HUGw(x1,x2)](z)] [λ-con]

= z[CATwe(z) HUGw(x1,z)] [λ-con]

So we get:

< IP , z[CATw(z) HUGw(x1,z)], {<1,λPu[GIRLw(u) → P(u)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

At this moment, we have reached the same stage as we did in derivation 1,

RETRIEVE1 will produce, after reduction:

< IP , u[GIRLw(u) → z[CATw(z) HUGw(u,z)]] , Ø>

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

15

DERIVATION 5

Derivation 5 proceeds in exactly the same way as derivation 4 and produces:

< IP , HUGw(x1,x2), {<1,λPu[GIRLw(u) → P(u)]>, <2,λP.z[CATw(z) P(z)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

This time, instead of applying RETRIEVE2 we apply RETRIEVE1 and get:

< IP , APPLY[λx1.HUGw(x1,x2),λPu[GIRLw(u) → P(u)]],

 {<2,λP.z[CATw(z) P(z)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

APPLY[λx1.HUGw(x1,x2), λPu[GIRLw(u) → P(u)]]

= LIFT[λx1.HUGw(x1,x2)](λPu[GIRLw(u) → P(u)])[def APPLY]

= λT.T(λx1.HUGw(x1,x2))(λPu[GIRLw(u) → P(u)])[def LIFT]

= λPu[GIRLw(u) → P(u)] (λx1.HUGw(x1,x2)) [λ con]

= u[GIRLw(u) →[λx1.HUGw(x1,x2)](u)] [λ-con]

= u[GIRLw(u) → HUGw(u,x2)] [λ-con]

So we get:

16

< IP , u[GIRLw(u) → HUGw(u,x2)], {<2,λP.z[CATw(z) P(z)]>} >

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

We have now joined derivation 3, applying RETRIEVE2 gives after reduction:

< IP , z[CATw(z) u[GIRLw(u) → HUGw(u,z)]] ,Ø>

 DP I'

 D NP I VP

 │ │ │

every girl e V DP

 │

 hug D NP

 │ │

 a cat

We conclude that we derive every girl hugs a cat with two meanings:

 for every girl there is a cat that she hugs,

and: there is a cat such that every girl loves him.

17

(2) Anna seeks a unicorn.

DE RE.

We gave an interpretation strategy that could derive a wide scope reading for a unicorn

by interpreting seek at type <e,<e,t>>. The scope mechanism will derive the same

reading:

For ease of representation I will write ∃ for λQλP.∃x[Q(x) ∧ P(x)]

and ∃[UNICORNw] for the application tree with ∃ and UNICORNw as daughter

 IP A, Ø

 DP I' λ ,<{<3,[UNICORNw]>},3> A

 │

Anna I VP x3 A UNICORNw

 │

 e V DP3 A ANNA

 │

 seek D NP λP.P A

 │ │

 a unicorn SEEKw x3, {<3,[UNICORNw]>}

APPLY[SEEKw,x3]

= SEEKw(LIFT[x3]) [def. APPLY]

= SEEK(∧wλP.P(x3)) [def. LIFT]

APPLY[λP.P,SEEKw(∧wλP.P(x3))]

= SEEKw(∧wλP.P(x3))

APPLY[SEEKw(∧wλP.P(x3)), ANNA]

= SEEKw(∧wλP.P(x3)) (ANNA) [def. APPLY]

= SEEKw(ANNA, ∧wλP.P(x3)) [rel. notation.]

= [λx.SEEKw(x, ∧wλP.P(x3))](ANNA) [backwards λ-con]

[[λyλx.SEEKw(x,⟧(∧wλP.P(y))](x3)] (ANNA) [backwards λ-con, x3 is rigid]

= SEEK∗,w(ANNA,x3) [def SEEK∗]

LAMBDA[x3, SEEK∗,w(ANNA,x3)]

= λx3.SEEK∗,w(ANNA,x3) [def. LAMBDA]

= λx.SEEK∗,w(ANNA,x) [alphabetic var.]

18

APPLY[λx.SEEK∗,w(ANNA,x), λP.z[UNICORNw(z) P(z)]]

= LIFT[λx.SEEK∗,w(ANNA,x)](λP.z[UNICORNw(z) P(z)]) [def. APPLY]

= λT.T(λx.SEEK∗,w(ANNA,x))(λP.z[UNICORNw(z) P(z)]) [def. LIFT]

= λP.z[UNICORNw(z) P(z)] (λx.SEEK∗,w(ANNA,x)) [λ-con]

= z[UNICORNw(z) [λx.SEEK∗,w(ANNA,x)](z)] [λ-con]

= z[UNICORNw(z) SEEK∗,w(ANNA,z)] [λ-con, z is rigid]

 IP z[UNICORNw(z) SEEK∗,w(ANNA,z)]

 DP I'

 │

john I VP

 │

 V DP3

 │

 seek D NP

 │ │

 a unicorn

19

(3) Anna believes that a unicorn purred.

De RE a unicorn

 IP , A,Ø

 DP I' λ,<{<4, [UNICORNw]>},4> A

 │

Anna I VP x4 A, UNICORNw

 |

 e V CP A ANNA

 │

 believe C IP λP.P A

 │

 that DP4 I' BELIEVEw A

 D NP I VP λp.p A

 │ │ │ │

 a unicorn e purr A x4,{<4,[UNICORNw]>}

 λP.P PURRw

APPLY[λP.P, PURRw],x4]

= PURRw

APPLY[PURRw, x4]

= PURRw(x4)

APPLY[λp.p, PURRw(x4)] =

 ∧vPURRv(x4)

APPLY[BELIEVEw, ∧vPURRv(x4)]

= BELIEVE(∧vPURRv(x4))

APPLY[λP.P, BELIEVE(∧vPURRv(x4))]

= BELIEVE(∧vPURRv(x4))

APPLY[BELIEVE(∧vPURRv(x4)), ANNA]

= BELIEVE(ANNA, ∧vPURRv(x4))

LAMBDA[x3, BELIEVE(ANNA, ∧vPURRv(x4))]

= λx4.BELIEVE(ANNA, ∧vPURRv(x4))]

= λz.BELIEVE(ANNA, ∧vPURRv(z))]

APPLY[λz.BELIEVE(ANNA, ∧vPURRv(z))], λP∃y[UNICORNw(y) ∧ P(y)]]

= ∃y[UNICORNw(y) ∧ BELIEVE(ANNA, ∧vPURRv(y))]

20

So we get:

 <IP , ∃y[UNICORNw(y) ∧ BELIEVE(ANNA, ∧vPURRv(y))], Ø>

 DP I'

 │

AnnaI VP

 │

 e V CP

 │

 believe C IP

 │

 that DP I'

 D NP I VP

 │ │ │ │

 a unicorn e purr

21

6.2. Some thoughts about wide scope.

I am concerned here with scoping out of the complement of propositional attitude verbs.

As is well-known, while indefinite noun phrases in the complements of propositional

attitude verbs easily get de re-interpretations, such interpretations are generally much

harder to get for quantificational noun phrases.

(1) a. Every schoolgirl believes that a mathematician wrote Through the Looking Glass.

 -de dicto: this is the kind of stuff mathematicians write.

 -de re, widest scope: they all believe of Charles Dodgson that he wrote Through

 the Looking glass under the pseudonym of Lewis Caroll.

 -de re, narrow scope: Anna believes Hilbert wrote it, Emma believes Hardy

 wrote it,…

 b. Anna believes that every linguist knows many languages.

Several kinds of mechanisms have been proposed to deal the scoping of indefinites (for

instance, mechanisms of 'specific interpretation' - not always with a clear understanding

of what specific means), mechanisms of choice functions (See the L&P volume with

papers by Tanya Reinhart and by Yoad winter), skolem functions, individual concepts,

etc.

 The scope mechanism provided above is unrestricted, allows wide scope over the

intensional context for any noun phrase. Other scope mechanisms, like movement, are

clause bound and do not extend beyond the IP level. Even if we assume that this is a

good idea as a mechanism that applies to scope of true quantifiers, and hence explain why

they don't scope as freely as indefinites, we do have to face the fact that de re

interpretations of quantificational elements are in fact possible:

(2) a. Anna thinks that every girl in Dana's class is pretty.

Situation: Anna sees a group of girls in Park HaYarkon. She doesn't know them, but she

thinks all of them are pretty, and says so (mumbling). You ask me: what did Anna say?

Now I know that this is a party of all the girls in Dana's class. You don't know those girls

either, but you know Dana, so I say: Anna thinks that every girls in Dana's class is pretty.

This is felicitous and it shows a de re reading: it's not literally what she said, and there is

no reason to assume that she thinks de dicto that the girls in Dana's class are pretty.

What can we do about this?

22

Here is a first suggestion:

 Retrieval assumption (Default):

 Retrieval of noun phrases in store takes place as soon as the types fit for retrieval.

With this principle, the store is by default emptied when the derivation reaches type t,

i.e. at the IP level. With this principle, you will not expect wide scope readings.

How do we get them when we do?

Well, let us first look at the following de re construction:

(2) b. Anna believes of every girl in Dana's class that she is pretty.

Here there is an adjunct on the higher verb which takes the quantificational noun phrase

as a complement, and the CP-complement of the propositional attitude verb contains a

variable (a pronoun). Note too that the variable is obligatory, (2c) is infelicitous:

(2) c. Anna believes of every girl in Dana's class that Emma is pretty.

 IP

 DP I'

Anna I VP

 -s PP VP

 P DPn V CP

 of every girl believe C IP

 that DPn I'

 she I PRED[AP]

 is pretty

This structure only allows for a de re reading. How does it come about?

 Binding in the de re structure:

 1. We interpret the pronoun in the CP-complement as a variable xn

 2. We require that this variable is bound by the complement of the higher

 adjunct.

Quantifiers don't bind variables, so this is interpreted in the following way:

 3. We store the DP-complement in the higher adjunct under the same variable xn

 as the variable in the CP-complement: xn {<n, every girl in Dana's class>}

This is all.

23

Now when we retrieve the stored meaning at the matrix level, abstraction will bing both

variables. Obviously, this gives the correct de re reading.

Suggestion: What if we assume that (2a) allows a structure along the lines of the de re

 structure?

(2) a. Anna thinks that every girl in Dana's class is pretty.

 IP

 DP I'

Anna I VP

 -s PP VP

 P DPn V CP

 e e believe C IP

 [of] [xn]

 that DPn I'

 every girl I PRED[AP]

 [xn required]

 is pretty

For concreteness:

 1. Assume a null P with the same meaning as of, and assume that it triggers the

 conditions of the de re structure.

 2. Assume that the null complement of P is a variable xn.

 3. The de re structure requires a variable in the CP complement. This condition

 is satisfied by storing the DP-subject inside the CP under the same variable

 xn {<n,every girl in Dana's class>}.

We have now created a situation in which there is grammatical pressure on the retrieve

operation:

 -By default, every girl comes out of store at the lower IP level.

 -There is pressure to keep every girl in store to resolve the higher variable.

 We assume that this pressure can override the default.

24

[Note that if this is represented in the syntax, we are creating a weak cross-over violation.

But then, weak cross-over violations are so common anyway that there is little reason to

assume a principle forbidding weak cross-over in the syntax.

cf:

(3) The string that ties it to its mother keeps every foetus alive.]

We can go one step further, and observe that for corresponding propositional attitude

nouns the de re structure cannot be formed with the preposition of but requires about:

(4) a. Anna is bothered by the belief of every girl in Dana's class that she is pretty.

 b. Anna is bothered by the belief about every girl in Dana's class that she is pretty.

 c. Anna is bothered by the belief that every girl in Dana's class is pretty.

In (4a) every girl in Dana's class expresses the believer. The de re structure here can

only be expressed as (4b).

Let us now make the assumption that the null-preposition is a variant of a lexically

realized preposition, and in fact, a null-variant of a flexible preposition, one that easily

switches between multiple interpretations, like of:

 Null of-assumption: the null-PP is a null-version of of.

Since of allows the about-interpretation in the verbal domain, its null-version is available

for de re interpretations of propositional attitude verbs; since of does not allow the about-

interpretation in the nominal domain, its null-version is not available for de re

interpretations of propositional attitude nouns. It follows that cases like (4c) do not allow

the same wide scope interpretations as do the corresponding propositional attitude verb

cases.

Note finally, that the escape strategy suggested here for propositional attitude verbs is

unavailble for relative clauses:

(5) I want you to make me a list of all cases of a boy that invited every girl in the class

 to his birthday party.

(5) invites you to write down cases of all-girl inviting boys, not a list of girl-boy pairs,

specifying per girl the boys that invited her. every girl in the class does not scope out of

the relative clause. The suggestions made here provide no reason to expect otherwise.

25

6.3. Relative clauses and scope

6.3.1. Relative clauses

(1) The cat that - purred

(2) The woman that Ronya likes –

gaps: relativization gaps are semantically interpreted as variables. The variable is stored

and so that its type can be retrieved later..

<DP[rel], xn, {<n,xn>}> where xn VARe

 e

We start here with a filled store.

Possible respons to islands: if the derivation goes through an island and <n,xn> S,

where α xn replace xn by x. This will leave something in store that cannot be retrieved

later, so the store does not end up empty, and the derivation blocks.

Relative clause structure:

 CP[rel] CP[rel]

NP[rel] C'[rel] C[rel] IP

who C[rel] IP that

 e

<C[rel], λP.P, Ø> with P VAR<e,t>

<who, PERSONw, Ø> with PERSON CON<s,<e,t>>

BINDn:

If <IP, IP', S> is generated and <n,xn> is the only element stored under index n in S, then:

 BINDn[<IP, IP', S>] = <IP, λxn.IP', S − {<n,xn>}>

Assumption: BINDn can resolve type mismatch.

Modifier structure:

 NP

NP CP[rel]

26

(1) the cat that purred

DP

D NP

the NP CP[rel]

 cat C[rel] IP

 that DP[rel] I'

 e I VP

 e purred

We derive:

<DP[rel], xn, {<n,xn>}> + <I', PURRw, Ø> → <IP, PURRw(xn), {<n,xn>}>

 t

<C[rel], λP.P, Ø> + <IP, PURRw(xn), {<n,xn>}> → ?

The structure [CP[rel] C[rel] IP] is a complement structure, this means it gets interpreted

via:

APPLY[λP.P , PURRw(xn)]

 <<e,t>,<e,t>> t

There is a type mismatch which is resolved by applying BINDn at the IP level:

BINDn[<IP, PURRw(xn), {<n,xn>}>] = <IP, λxn.PURRw(xn), Ø>

<C[rel], λP.P, Ø> + <IP, λxn.PURRw(xn), Ø> → <CP[rel], λxn.PURRw(xn), Ø>

At the next stage, the relative clause interpretation shifts with the adjunction shift to a

modifier interpretation, applies to the head noun, and the definite article applies, and we

derive:

<DP, σ(λx.CATw(x) PURRw(x), Ø>

27

(1) the woman who Ronya likes -

 DP

D NP

the NP CP[rel]

 woman NP[rel] C'[rel]

 who C[rel] IP

 e DP I'

 ronya I VP

 e V DP[rel]

 likes e

We derive <IP, LIKEw(RONYA,xn), {<n,xn>}> and with BINDn:

<C'[rel] λxn.LIKEw(RONYA,xn), Ø>

The CP[rel] is a specifier structure, so here too adjunction lift applies to the relative, and

we derive:

<CP[rel], λx.PERSONw(x) LIKEw(RONYA,x), Ø>

This puts a selection restriction on the possible head, which woman satisfies. We derive

in the same way as above:

<DP, σ(λx.WOMANw(x) LIKEw(RONYA,x)), Ø>

28

6.3.2 Scope Islands and functional readings

Since Rodman 1972 (1975): Relative clauses are scope islands:

(3) a. Some girl dated every rockstar

 b. Some girl who dated every rockstar was Japanese.

Observation: (3a) allows with the right intonation an inverse scope reading.

(3b) does not: i.e. (3b) does not allow a reading where what is expressed that

 Yoko dated John

 Yuko dated Mick

 Ruriko dated Robert ….

So (3) only has a reading with every englishman interpreted in situ.

(3) The woman that every englishman admires is Judy Dench.

 IP

 DP I'

D NP I VP

the e

 V DP

 NP CP be Judy Dench

 woman

 C IP

 that

 DP I'

 D NP I VP

 every englishman e

 V DP

 admires e

We derive, just like in the cases above:

σ(λx.WOMANw(x) y[ENGLISHMANw(y) → ADMIREw(x,y)]) = JUDY DENCH

We come to (4):

29

(4) The woman that every englishman admires is his mother.

 IP

 DP I'

D NP I VP

the e

 V DP

 NP CP be

 woman DET NP

 Cn IP his mother

 that

 DP I'

 D NP I VP

 every englishman e

 V DPn

 admires e

Suggestion:

 IP

 DP I'

D NP I VP

the e

 V DP

 NP CP be

 woman DETn NP

 Cn IP his mother

 that

 DP STOREn I'

 D NP I VP

 every englishman e

 V DPn

 admires e

Problem: No syntactic or semantic theory allows retrieval of this DP stored in the

relative clause at the level where it takes scope over his mother.

-Rodman 1972 observed that relative clauses are scope islands.

-QR can not extract out of DPs.

-Yael Sharvit: applying QR anyway predicts wrong interpretations.

30

Alternative: functional readings: Groenendijk and Stokhof 198?, Jacobson 198?, Sharvit

199?

Main idea:

1. DPn can be interpreted as a functional variable of type <e,e> (functions of this type are

called Skolem functions in logic).

2. his in his mother is not semantically bound by the quantifier (or semantically co-

indexed with the gap).

Let’s start with 2.

We assume that mother is a relational noun, what is a noun of type <e,<e,t>>.

< N , MOTHERw >, with MOTHER a relational noun of type <s,<e,<e,t>>>

 mother

We assume that in his mother, his is not a free pronoun, but is semantically bound to the

mother function: his/her mother denotes the function that maps individuals onto their

mother:

<[DP his mother], λy.σ(λx.MOTHERw(x,y)>

λy.σ(λx.MOTHERw(x,y) is the function in D<e,e> that maps y onto the mother of y.

With this we assume that the predicate be his mother denotes the obvious predicate of

type <<e,e>,t>, with f ∈ VAR<e,t>

< I’, λf.(f = λy.σ(λx.MOTHERw(x,y)), Ø>

 I DP

 be his mother

At this point, what we need to do is:

derive an interpretation f of the woman that every englishman admires of type <e,e>.

The sentence will then denote the claim that

f = λy.σ(λx.MOTHERw(x,y).

31

the woman that every englishman admires

We make really only one assumption, and derive most of the rest of the analysis from

general reasoning. The assumption is that the relativixation gap can be a functional

variable, a variable of type <e,e>.

 DP

D NP

the

 NP CP

 woman

 Cn IP

 that

 DP I'

 D NP I VP

 every englishman e

 V <DPn, fn, {<n,fn>}>

 admires e

 with fn ∈ VAR<e,e>

 At the VP level we derive:

< VP , APPLY[ADMIREw, fn], {<n,fn>}>

 V DPn

 admires e

where ADMIRE ∈ CON<s,<e,<e,t>>> and fn ∈ VAR<e,e>

So, we have a type mismatch:

ADMIREw gobbles up individuals, and it is fed a function.

This type mismatch needs to be resolved with a type shifting rule.

Which rule?

Let’s reason. We just assumed that his/her mother can denote the mother function.

What does it mean that Hilary admires his/her mother in terms of Hilary and the mother

function? It means, of course, that Hilary admires his/her value of the mother function.

Thus it is natural to interpret the non-welformed: ADMIREw(HILARY, M) as the

wellformed: ADMIREw(HILARY, M(HILARY)).

Abstracting away Hilary, we get: λx.ADMIREw(x,M(x)).

Abstracting away M, we get: λfλx.ADMIREw(x,f(x))

Abstracting away ADMIREw, we get: λRλfλx.R(x,f(x))

This operation, called BIND, was proposed as a type shifting operation by Polly Jacobsen

(but it goes back to the Combinatory Logic of Curry).

32

BIND: <e,<e,t>> → <<e,e>,<e,t>>

BIND[α] = λf λx.α(x, f(x))

With this, we resolve the type mismatch:

< VP , APPLY[ADMIREw, fn] , {<n,fn>}>

 V DPn

 admires e

APPLY[ADMIREw, fn] = BIND[ADMIREw](fn) =

 λfλx.ADMIREw(x,f(x))(fn) =

 λx.ADMIREw(x,fn(x)) of type <e,t>

 the property that you have if you admire your fn-value.

From here we build up the IP:

<[IP every Englishman admires en],

∀x[ENGLISHMANw(x) → ADMIREw(x,fn(x))] , {<n,fn>}>

A the next level variable fn comes out of store and is abstracted over, and we get:

<[C’ that[rel] every Englishman admires en],

λfn. ∀x[ENGLISHMANw(x) → ADMIREw(x,fn(x))] , Ø>

 The set of all functions that map every Englishman onto his fn value, of type

<<e,e>,t>

Next, we combine this with the head noun woman, woman with interpretation:

 WOMAN ∈ CON<s,<e,t>>

Again, we have a type mismatch, because for intersective adjunction, we need woman to

have an interpretation at type <<e,e>,t>.

So we need to lift WOMANw from type <e,t> to type <<e,e>,t>.

Here we are guided by the intution that

while every Englishman constrains the domain of the functions in question,

woman constrains the range of the functions: they are, for Englishmen, woman-valued

functions.

We can let the type shifting rule express exactly that, the function RANGE:

 RANGE: <e,t> → <<e,e>,t>

RANGE = λPλf.∀x[P(f(x))]

RANGE[WOMANw] = λf.∀x[WOMANw(f(x)] of type <<e,e>,t>

 The set of functions that are woman-valued.

33

Now we do the adjunction, at type type <<e,e>,t> and derive:

<[CP woman that every englishman admires en],

 λf.∀x[WOMANw(f(x)) ∧ ∀x[ENGLISHMANw(x) → ADMIREw(x,f(x))], Ø>

 The set of functions that are woman-valued such that every Englishman admires

his value.

At this point we need to move from the technical domain to a normal context.

At the next level the definite article applies.

But it requires a singleton set.

 But the above set is not going to be a singleton set, because you can arbitrarily build

such functions by linking Englishmen with women.

For instance, suppose every englishman admires two women, his mother and either his

grandmother or his primary schoolteacher.

Then the mother function f1 is in the above set.

Now take the function f2 that maps every englishman except Dan onto his mother, and it

maps Dan onto his grandmother, who he admires. Then f2 is also in this set.

Take the function f3 that only differs from f2 in that it maps Joe onto his schoolteacher,

who he admires: then f3 is also in that set.

It should be clear that with permutations the above set of functions, under the pretty

normal conditions given is massively big.

Which means that the σ operation would never be defined, even if the set of Englishmen

and Woman are contextually restricted, and we allow partial functions, so that we can

restrict ourselves to functions whose domain is Englishmen.

The standard way out, which I will follow here (though a different analysis is given in my

handlout: Two tier semantics for relative clauses from 2007, which is on my webpage) is

to assume that the context restricts the set of functions derived to:

a set of contextually salient natural functions: C.

<[NP woman that every englishman admires en],

 λf.C(f) ∧ ∀x[WOMANw(f(x)) ∧ ∀x[ENGLISHMANw(x) → ADMIREw(x,f(x))], Ø>

 The set of contextually relevant natural woman-valued functions that map every

 Englishman onto a woman that he admires.

Thus C would typically include such natural functions as his mother, his grandmother,

his primary school teacher, his first girlfriend,... etc. standard contextually salient

functional roles.

But not crazy ones, like the function that maps me on my mother, you on your sister,

Buck on his girlfriend, Chuck on Madonna, etc...

And not the function that maps some englishmen onto their mother, others onto their

grandmother and yet others onto their schoolteacher,

because that function would not be a natural function.

34

In the example, C would contain the mother function, the grandmother function and the

schoolteacher function, and only the first one, the mother function is such that every

englishman admires his value, since not every englishman admires his grandmother and

not every englishman admires his schoolteacher.

Given this, we can plausibly assume that in context the definite DP is well defined:

<[DP the woman that every englishman admires en],

 σ(λf.C(f) ∧ ∀x[WOMANw(f(x)) ∧ ∀x[ENGLISHMANw(x) → ADMIREw(x,f(x))]), Ø>

 The unique contextually salient woman-valued function that satisfies the

 requirement that every Englishman admires his value for this function.

The statement then express that this function is the mother function:

<[IP the woman that every englishman admires en is his mother],

 σ(λf.C(f) ∧ ∀x[WOMANw(f(x)) ∧ ∀x[ENGLISHMANw(x) → ADMIREw(x,f(x))])

 =

 λy.σ(λx.MOTHERw(x,y), Ø>

The unique contextually salient woman-valued function that satisfies the requirement

that every Englishman admires his value for this function, is the mother function.

In sum: we see that we have solved the problem of ‘binding’ the pronoun without relying

on the scope mechanism:

-the pronoun his is bound locally in his mother: λx.σ(λy.MOTHERw(x,y))

-the value of the gap function is bound by every englishman via the typeshifting operation

BIND, this means that it is bound locally in admire: λfλx.ADMIREw(x,f(x))

-We derive a definite that denotes a natural function. The function identity then identifies

the functions and gets the reading right.

35

6.4. Function composition

6.4.1. Some remarks on dislocation in the syntax and in the semantics.

The X-bar theory I have introduced provides us with a theory of syntactic trees. For the

present discussion it is useful to give the semantic interpretations associated with these

syntactic trees the form of a tree as well. This is done along the following lines:

Let: := λQλP.x[Q(x) → P(x)]

 : = λQλP.x[Q(x) P(x)]

 A := APPLY

 [A α, β] := APPLY[α,β]

 IP A

 DP I' A A

 D NP I VP λP.P A GIRLw

 │ │ │

every girl e V DP HUGw A

 │

 hug D NP CATw

 │ │

 a cat

Thus, the semantic tree consists of the meanings of the basic expressions at the leaves,

and the semantic operations labeling the non-leaves, under the convention that the

function is on the left branch.

Now, we are interested in two kinds of dislocation: syntactic dislocation and semantic

dislocation:

36

Syntactic dislocation: e.g. topicalization:

the topic is sitting at the top of the syntactic tree while its interpretation is (or can be)

sitting in its normal place down in the semantic tree:

 TopP A

 DP Top' A A

D NP Topn IP λP.P A GIRLw

│ │ │

a cat e DP I' HUGw A

 D NP I VP CATw

 │ │ │

 every girl e V DPn

 │ │

 hug e

Semantic dislocation: e.g. inverse scope:

the meaning of a cat is sitting at the top of the semantic tree while the DP a cat is sitting

in its normal place down in the syntactic tree:

Let: [λ xn, β] := λxn.β

 IP A

 DP I' λ A

 D NP I VP xn A CATw

 │ │ │

every girl Ø V DP A A

 │

 hug D NP λP.P A GIRLw

 │ │

 a cat HUGw xn

When you calculate the meaning, you'll get out:

APPLY[λxn.x[GIRLw(x) → HUGw(x,xn)], λP.y[CATw(y) P(y)]]

= y[CATw(y) x[GIRLw(x) → HUGw(x,y)]]

For each of these two dislocation situations there are three strategies to deal with them:

37

1. Syntactic dislocation: a syntactic expression is sitting at the top of the syntactic tree,

while its meaning is sitting at the bottom of the semantic tree:

STRATEGY 1.1:

Generate both [DP a cat] and its meaning ∃[CATw] at the bottom of the respective trees,

and move [DP a cat] up to the top of the syntactic tree.

This is syntactic movement.

STRATEGY 1.2:

Generate both [DP a cat] and its meaning [CATw] at the top of the respective trees, and

move the meaning [CATw] down to the bottom of the semantic tree.

This is what is called reconstruction.

STRATEGY 1.3:

Generate both [DP a cat] and its meaning [CATw] at the top of the respective trees, but

assume a different semantic tree, which will have the effect of movement, without

movement:

This is a non-movement function composition analysis: (e.g. GPSG, Categorial

Grammar, Jacobson)

 TopP A

 DP Top' LC A

D NP Topn IP RC A CATw

│ │ │

a cat e DP I' λP.P RC GIRLw

 D NP I VP HUGw λT.T

 │ │ │

 every girl e V DPn

 │ │

 hug e

Here: [RC α, β] := RC[α,β] and RC is right function composition:

 Right Function Composition:

 RC[α,β] = λx.APPLY[α, β(x)]

 [LC α, β] := LC[α,β] and LC is left function composition:

 Left Function Composition:

 LC[α,β] = λx.APPLY[α(x), β]

We discuss this below.

38

2. Semantic dislocation: a meaning is sitting at the top of the semantic tree, while the

syntactic expression of which it is the meaning is sitting at the bottom of the syntactic

tree:

STRATEGY 2.1:

Generate both [DP a cat] and its meaning [CATw] at the bottom of the respective trees,

and move [CATw] up to the top of the semantic tree.

This is semantic movement: Cooper's storage mechanism, and also Quantifier Raising.

STRATEGY 2.2:

Generate both [DP a cat] and its meaning [CATw] at the top of the respective trees, and

move the [DP a cat] down to the bottom of the syntactic tree. An example of this strategy

is (in essence) Montague's original quantifying-in rule.

STRATEGY 2.3:

Generate both [DP a cat] and its meaning [CATw] at the bottom of the respective trees,

but assume a different semantic tree, which will have the effect of movement, without

movement:

This is a non-movement type shifting analysis (Hendriks in Categorial Grammar):

 IP A

 DP I' A A

 D NP I VP λP.P A GIRLw

 │ │ │

every girl e V DP INV[HUGw] A

 │

 hug D NP CATw

 │ │

 a cat

Here: INV[α] = λTλU.T(λy.U(λx.α(x,y)))

This means that you shift the verb meaning to the function which will put the arguments

it receives in inverse scope order:

INV[HUGw] = λTλU.T(λy.U(λx.HUGw(x,y)))

APPLY[INV[HUGw], λP.y[CATw(y) P(y)]]

= λU.y[CATw(y) U(λx.HUGw(x,y))]

we take λP.P here to stands for the identity function at the required type (which is a

higher type in this case). We get:

39

APPLY[λU.y[CATw(y) U(λx.HUGw(x,y))], λP.x[CATw(x) → P(x)]]

= y[CATw(y) x[GIRLw(x) HUGw(x,y)]

6.4.2. Categorial grammar and function composition

We add to the syntactic theory developed sofar a treatment of gaps in categorial

grammar. Our main interest here is to introduce function composition and small and big

lambdas. (Our discussion here is indepted to many works, but I single out the work on

surface compositionality by Polly Jacobson as the main inspiration for the current

discussion.)

Let A stand for a tree with topnode A.

A/DP stands for a tree with topnode A, and with node DP missing in it, i.e. with a

DP-gap:

 A A/DP

 DP DP

 mary Ø

On this model, a tree of the form DP/DP is a DP with a DP missing in it. The smallest

kind of this is a DP with itself missing, this is a DP-gap:

 DP/DP

 Ø

The normal X-bar rules that we have dictate the natural principles for percolating slashes

up the tree: X-bar theory allows a tree of the form:

 V'

V DP

If we replace the DP by a DP-gap, then the top V' is itself no longer a V', but a V' with a

DP missing in it:

 V'/DP

V DP/DP

 e

40

Following this strategy, we can build up an IP/DP structure containing a chain:

 IP/DP

 DP I'/DP

 D NP I VP/DP

 every girl e V DP/DP

 hug e

At this point we can allow an operation that provides the head of the chain, and we get a

topicalization structure. (all this can, of course, be made syntactically sophisticated).

 IP

 DP IP/DP

 D NP DP I'/DP

some cat D NP I VP/DP

 every girl e V DP/DP

 hug e

We are interested in the semantic interpretation.

We start with the gap. DP/DP. Standardly, we would interpret a DP-gap as a free

variable x. Here we think of the gap as a tree with 'itself' missing in it. We carry over

that idea into the semantics: We would like to think of the meaning of the gap as a

variable meaning, but it must really be a variable meaning with itself missing it, i.e.

something that would be a variable if you applied it to a variable. This is just a complex

way of describing the identity function, and since we are concerned with a variable of

type e, we interpret the gap as:

DP/DP → λx.x with x a variable of type e

 <e,e>

V → HUGw

 <e,<e,t>>

41

We would get at the VP level:

VP → APPLY[HUGw, DP]

 <e,t>

But we don't get that, we get:

VP/DP → HUGw + DP/DP

And the reasoning about types tells us that VP/DP is not of type <e,t>, like VP, but has a

DP meaning missing in it, i.e. is a function from DP-meanings to VP-meanings:

VP/DP → HUGw + DP/DP

<e,<e,t>> <e,<e,t>> <e,t>

The operation involved is function composition:

 α ∘ β = λx.α(β(x))

-Apply β to a variable x

-Apply α to the result β(x)

-Abstract over x.

You get the function that maps every x onto the result of first applying β to x, and then

applying α to the result.

Instead of simple function application, we write APPLY:

 Right Function Composition:

 RC[α,β] = λx.APPLY[α, (β(x))]

VP/DP → HUGw + DP/DP

<e,<e,t>> <e,<e,t>> <e,t>

RC[HUGw, λx.x] = λz.APPLY[HUGw, λx.x(z)]

 = λz.APPLY[HUGw, z]

 = λz.HUGw(z)

 = HUGw

Thus, we derive, correctly, a relational meaning for the VP/DP.

I'/DP → λP.P + VP/DP

<e,<e,t>> <<e,t>,<e,t>> <e,<e,t>>

The same operation of RC builds the correct meaning for I'/DP:

(the gap is, as before, inside the argument, and we use the same operation of RC)

42

RC[λP.P, HUGw] = λz.APPLY[λP.P, HUGw(z)]

 = λz.λP.P(HUGw(z))

 = λz.HUGw(z)

 = HUGw

At the next stage, the gap is in the function, rather than in the argument, since we chose

the I' to be a function on the specifier. We pay the price for that decision here.

If we had switched the function-argument structure around, we could have continued

with R-C. Now we must use L-C (since the gap is inside the function) and do a lot of

type shifting:

L-C = λx.APPLY[α(x), β]

DP λP.x[GIRLw(x) → P(x)]

IP/DP → L-C[HUGw, λP.x[GIRLw(x) → P(x)]]

L-C[HUGw, λP.x[GIRLw(x) → P(x)]] =

λz.APPLY[HUGw(z), λP.x[GIRLw(x) → P(x)]] = LIFT

λz. λT.T(HUGw(z)) (λP.x[GIRLw(x) → P(x)]) =

λz. λP.x[GIRLw(x) → P(x)](HUGw(z)) =

λz. x[GIRLw(x) → HUGw(x,z)]

IP/DP → λz. x[GIRLw(x) →HUGw (x,z)]

 <e,t>

The property that you have if every girl hugs you

What function composition does in each stage of the derivation is:

-Temporarily apply the thing with the gap to a variable (of type type of the gap).

-Then do the operation that you would do if there were no gap (i.e. APPLY).

-After that, abstract over the variable again.

This way you keep the lambda-operation λz. on the outside of the expression all the time

during the derivation.

So, not surprisingly, since IP is of type t, IP/DP is of type <e,t>.

This combines as a function to the DP-top of the chain:

Now the final operation is APPLY rather than compose. The types get balanced again at

the top of the chain (normality is re-established, anything else is just your own problem):

IP → APPLY[λz. x[GIRLw(x) → HUGw(x,z)]. λPy[CATw(y) P(y)]

This gets resolved in standard way, and we derive:

IP → y[CATw(y) x[GIRLw(x) → HUGw(x,y)]]

We have derived one interpretation.

43

However, the topicalization sentence Some cat every girl hugged is scopally ambiguous,

it allows both scope readings. The problem is: how do we get the narrow scope

reading?

We know that the gap DP/DP has to have the interpretation of an identity function.

We also know that its interpretation will have to take narrow scope.

Above, we interpreted the gap as low as we could as λx.x, with an individual variable

missing in it.

But for narrowest scope we want to hide inside the gap not an interpretation of type e, but

a full interpretation at type <<e,t,>,t>, because that is the expression that takes narrow

scope. So we allow an interpretation of the gap with an interpretation at the highest

relevant type missing:

DP/DP → λT.T with T a variable of type <<e,t,>,t>

 <<<e,t>,t>,<<e,t>,t>>

We follow the derivation:

VP/DP → RC[HUGw, λT.T]

RC[HUGw, λU.U] = [alphabetic variable]

λT.APPLY[HUGw, λU.U(T)] =

λT.APPLY[HUGw, T] = [LIFT HUGw]

λT ([λUλx.U(λy.HUGw(x,y))](T)) =

λTλx.T(λy.HUGw(x,y)

It will not come as a surprise that this interpretation inherits with R-C up to I'/DP.

At the next step L-C will give:

IP/DP → L-C[λTλx.T(λy.HUGw(x,y)), λP.x[GIRLw(x) → P(x)]]

-we apply the function to a variable T, and get λx.T(λy.HUGw(x,y)) of type <e,t>.

This applies in the normal way to the DP meaning, deriving:

x[GIRLw(x) → T(λy.HUGw(x,y))]

Finally, we abstract over T and get:

IP/DP → λT.x[GIRLw(x) → T(λy.HUGw(x,y))]

 This applies to the topicalized DP:

IP → λT.x[GIRLw(x) → T(λy.HUGw(x,y))] (λP.y[CATw(y) P(y)])

44

λ-conversion gives:

IP → x[GIRLw(x) → y[CATw(y) HUGw(x,y)]]

Thus we derive the narrow scope interpretation by giving a higher interpretation to the

gap (with a 'big lambda'). This technique has also been applied to cases involving

internal interpretations of external material in relative clauses involving intensional

contexts (e.g. Sharvit 20??).

6.4.3. Naked infinitives and serial verbs in Dutch

that Fred has let Ronya see Alex help Ezra eat porridge

dat Fred Ronya Alex Ezra pap laten zien helpen eten heeft

CP

 C IP

that DP I’

 Fred I VP

 has V SC

 let DP VP

 Ronya V SC

 see DP VP

 Alex V SC

 help DP VP

 Ezra V DP

 eat porridge

In Dutch verbal heads are on the right, this would give the following structure:

45

CP

 C IP

dat DP I’

 Fred VP I

 SC V heeft

 DP VP laten

 Ronya SC V

 DP VP zien

 Alex SC V

 DP VP helpen

 Ezra DP V

 pap eten

#Dat Fred Ronya Alex Ezra pap eten helpen zien laten heeft.

This is not what we find, what we find is:

Dat Fred Ronya Alex Ezra pap laten zien helpen etnen heeft

Dat Fred Ronya Alex Ezra pap heeft laten zien helpen eten

I will here only deal with the structure with the auxiliary at the end.

Constituent structure tests show that the verb sequence laten zien helpen eten is a

constituent and that it is a constituent sitting in the lowest V position. This is because all

of the following are also constituents:

 laten zien helpen eten

 pap laten zien helpen eten

 Ezra pap laten zien helpen eten

Alex Ezra pap laten zien helpen eten

This can be shown with verb second in Dutch. In verb second the auxiliary heeft occurs in

the C position, and in that case the specifier position of CP must be filled with a constituent.

Everything that is a constituent in the above structure can occur felicitously in first

position (unless putting it there violates syntax independently), nothing else can.

46

 ― heeft Fred Ronya Alex Ezra pap laten zien helpen eten

Fred heeft Ronya Alex Ezra pap laten zien helpen eten

Ronya heeft Fred Alex Ezra pap laten zien helpen eten

Alex heeft Fred Ronya Ezra pap laten zien helpen eten

Ezra heeft Fred Ronya Alex pap laten zien helpen eten

Pap heeft Fred Ronya Alex Ezra laten zien helpen eten

laten zien helpen eten heeft Fred Ronya Alex Ezra pap

pap laten zien helpen eten heeft Fred Ronya Alex Ezra

Ezra pap laten zien helpen eten heeft Fred Ronya Alex

Alex Ezra pap laten zien helpen eten heeft Fred Ronya

Ronya Alex Ezra pap laten zien helpen eten heeft Fred

 # Fred Ronya Alex Ezra pap laten zien helpen eten heeft

 #[Fred en Ronya Alex Ezra pap laten zien helpen eten]k [heeftn [ek]]]

The latter is a constituent but moves the trace of the verb over the landing site of the verb

in C, which violates syntax in however way you may want to formulate verb second.

This argues for the following structure:

CP

 C IP

dat DP I’

 Fred VP I

 SC V heeft

 DP VP e

 Ronya SC V

 DP VP e

 Alex SC V

 DP VP e

 Ezra DP V

 pap laten zien helpen eten

47

Syntactic – semantic mismatch:

The naked infinitive verbs let, see, help take small clause complements,

so you would think they are best analyzed as two place relations between individuals and

propositions.

But semantically they are better analyzed as three place relations between two individuals

and a property, the higher subject, the lower small clause subject and the small clause

property.

The argument comes from the analysis given for Dutch below.

So:

have → Pw = λPλx.PERFw(P(x))

help → Hw = λPλyλx.HELPw(x,P(y)) x helps y in w having property P.

let → Lw = λPλyλx.LETw(x,P(y)) x lets y in w have property P.

see → Sw = λPλyλx.SEEw(x,P(y)) x sees y in w having property P.

I will ignore issues of the proper semantics of Naked Infinives (there is an event based

proposal in Landman 2000), but concentrate at getting right who does what.

English grammar:

< VP, (VNI(VPSC)))(DPSC) >

VNI SC

 DPSC VPSC

So:

< VP, [λPλyλx.HELPw(x,P(y)) (λz.EATw(z,PORRIDGEw))] (EZRA) >

VNI SC

help

 DPSC VPSC

 Ezra V DP

 eat porridge

(λPλyλx.HELPw(x,P(y)) (λz.EATw(z,PORRIDGEw))(EZRA) > =

λyλx.HELPw(x, λz.EATw(z,PORRIDGEw)(y)) (EZRA) =

λyλx.HELPw(x, EATw(y,PORRIDGEw)) (EZRA) =
λx.HELPw(x, EATw(EZRA,PORRIDGEw)) =

48

< VP, λx.HELPw(x, EATw(EZRA,PORRIDGEw)) >

VNI SC

help

 DPSC VPSC

 Ezra V DP

 eat porridge

With this we derive:

that Fred has let Ronya see Alex help Ezra eat porridge

λw.PERFw(LETw(FRED, SEEw(RONYA, HELPw(ALEX, EATw(EZRA, PORRIDGE)))))

Dutch:

[V laten zien helpen eten]

In lexical domains function composition is a normal operation.

But we need to generalize function composition:

 Generalized Function Composition:

α ∘ β = λxn...λx1 .α(β(x1,...xn))

The idea is: you want to apply α to β, but the types don’t fit. Apply β to variables

x1...,xn to bring it to the input type of α (in Curried functional type theory, in order xn then

xn―1... then x1). Apply α, and abstract over the variables x1 ...xn.

So, I propose:

laten zien helpen eten → (Lw ∘ (Sw ∘ (Hw ∘ EATw)))

The fact that this works is the direct motivation for the assumption that Naked Infinitive

verbs are three place relations.

The analysis doesn’t work if the semantics can be read off the syntactic structure,

because then you would not allow the naked infinitive access inside the small clause,

i.e. it would combine with a proposition,

not with the subject and the VP property seperately.

But the analysis with function compostion does work and is very insightful.

Here is a situation where it is useful to choose your variables in a fixed way and

systematically apply: [λxn.φ(xn)](xn) and get φ(xn).

The unnaturalness of variables chosen in the beginning, has mnemonic advantages in the

end.

49

Hw ∘ EATw =

λx5λx4.EAT(x4,x5) of type <e2,t> (= <e,<e,t>>)

λPλx4λx3.HELPw(x3,P(x4)) ∘ λx5λx4.EAT(x4,x5) =

λx5.[λPλx4λx3.HELPw(x3,P(x4)) λx5λx4.EAT(x4,x5)(x5))] =

λx5.[λPλx4λx3.HELPw(x3,P(x4)) (λx4.EATw(x4,x5))] =

λx5.[λPλx4λx3.HELPw(x3,P(x4)) (λx4.EATw(x4,x5))] =

λx5λx4λx3.HELPw(x3,(λx4.EATw(x4,x5)(x4)) =

λx5λx4λx3.HELPw(x3, EATw(x4,x5)) of type <e3,t>

Sw ∘ (Hw ∘ EATw)) =

λPλx3λx2.SEEw(x2,P(x3)) ∘ λx5λx4λx3.HELPw(x3, EATw(x4,x5)) =

Here we need to apply λx5λx4λx3.HELPw(x3, EATw(x4,x5)) to two variables to bring it

down to <e,t>:

λx5λx4[λPλx3λx2.SEEw(x2,P(x3)) (λx5λx4λx3.HELPw(x3, EATw(x4,x5))(x4,x5)] =

λx5λx4[λPλx3λx2.SEEw(x2,P(x3)) (λx3.HELPw(x3, EATw(x4,x5))] =

λx5λx4[λPλx3λx2.SEEw(x2,P(x3)) (λx3.HELPw(x3, EATw(x4,x5))] =

λx5λx4λx3λx2.SEEw(x2,λx3.HELPw(x3, EATw(x4,x5))(x3)) =

λx5λx4λx3λx2.SEEw(x2, HELPw(x3, EATw(x4,x5))) of type <e4,t>

(Lw ∘ (Sw ∘ (Hw ∘ EATw))) =

λPλx2λx1.LETw(x1,P(x2)) ∘ λx5λx4λx3λx2.SEEw(x2, HELPw(x3, EATw(x4,x5)))

 =

50

Here we need to let λx5λx4λx3λx2.SEEw(x2, HELPw(x3, EATw(x4,x5))) apply to three

variables to bring it down to <e,t>

λx5λx4λx3[λPλx2λx1.LETw(x1,P(x2))

(λx5λx4λx3λx2.SEEw(x2, HELPw(x3, EATw(x4,x5)))(x3,x4,x5)]

 =

λx5λx4λx3[λPλx2λx1.LETw(x1,P(x2)) (λx2.SEEw(x2, HELPw(x3, EATw(x4,x5)))

 =

λx5λx4λx3[λPλx2λx1.LETw(x1,P(x2)) (λx2.SEEw(x2, HELPw(x3, EATw(x4,x5)))

 =

λx5λx4λx3λx2λx1.LETw(x1,λx2.SEEw(x2, HELPw(x3, EATw(x4,x5))(x2))

 =

λx5λx4λx3λx2λx1.LETw(x1,SEEw(x2,HELPw(x3,EATw(x4,x5)))) of type <e5,t>

So:

later zien helpen eten → λx5λx4λx3λx2λx1.LETw(x1,SEEw(x2,HELPw(x3,EATw(x4,x5))))

of type <e5,t>

Dutch grammar:

< VP , SC >

SC VNI

 e

The n-place relation interpretation of SC inherits up to the VP

[VP pap laten zien helpen eten] →

λx4λx3λx2λx1.LETw(x1,SEEw(x2,HELPw(x3,EATw(x4,PORRIDGEw)))) of type <e4,t>

[SC Ezra pap laten zien helpen eten] →

λx3λx2λx1.LETw(x1,SEEw(x2,HELPw(x3,EATw(EZRA,PORRIDGEw)))) of type <e3,t>

[VP Ezra pap laten zien helpen eten eV] →

λx3λx2λx1.LETw(x1,SEEw(x2,HELPw(x3,EATw(EZRA,PORRIDGEw)))) of type <e3,t>

[SC Alex Ezra pap laten zien helpen eten eV] →

λx2λx1.LETw(x1,SEEw(x2,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))) of type <e2,t>

[VP Alex Ezra pap laten zien helpen eten eV eV] →

λx2λx1.LETw(x1,SEEw(x2,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))) of type <e2,t>

51

[SC Ronya Alex Ezra pap laten zien helpen eten eV eV] →

λx1.LETw(x1,SEEw(RONYA,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))) of type <e,t>

[VP Ronya Alex Ezra pap laten zien helpen eten eV eV eV] →

λx1.LETw(x1,SEEw(RONYA,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))) of type <e,t>

[I’ Ronya Alex Ezra pap laten zien helpen eten eV eV eV heeft] →

λx1.PERFw(LETw(x1,SEEw(RONYA,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))))

of type <e,t>

[IP’ Fred Ronya Alex Ezra pap laten zien helpen eten eV eV eV heeft] →

PERFw(LETw(FRED,SEEw(RONYA,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))))

of type t

[CP dat Fred Ronya Alex Ezra pap laten zien helpen eten eV eV eV heeft] →

λw.PERFw(LETw(FRED,SEEw(RONYA,HELPw(ALEX,EATw(EZRA,PORRIDGEw)))))

of type <s,t>

This is, of course, the same interpretation as the one we derived for English.

German works the same as Dutch, except that the verbs are in the inverse order. But the

constituent structure tests work the same, so: the only diffence is the order inside the

complex V:

laten zien helpen eten

 essen helfen sehen lassen

The Formal Languages discusses computational aspects of this structure in Dutch and

German.

Natural languages have plenty lexical verbs that are grammatically one place relations,

plently lexical verbs that are two place relations, some lexical verbs that are three place

relations, and very few above that.

Serial verb constructions are constructions that build complex verbs (not VPs) that are n-

place relations.

